Knowledge graphs are powerful models to represent networks of real-world entities, such as objects, events, situations, concepts, by illustrating the relationships between them. Information encoded by knowledge graphs is usually stored in graph databases, and visualized as graph structures. Although these models have been introduced in the Semantic Web context, they have recently found successful applications also in other contexts, e.g., the analysis of financial, social, geospatial and biomedical data.
Knowledge graphs often integrate datasets from various sources, which frequently differ in their structure. This, together with the increasing volumes of structured and unstructured data stored in a distributed manner, bring to light new problems related to data/knowledge representation and integration, data querying, business analysis and knowledge discovery.
The ultimate goal of this workshop is to provide participants with the opportunity to introduce and discuss new methods, theoretical approaches, algorithms, and software tools that are relevant to the Knowledge Graphs based research, especially when it is focused on a large scale. To this regard, interesting open issues include how Knowledge Graphs may be used to represent knowledge, how systems managing Knowledge Graphs work, and which applications may be provided on top of a Knowledge Graph, in the distributed.
The list of topics for the workshop, that has not to be intended as exhaustive, is reported below.
Topics
- Explainable knowledge recommendation
- Link prediction
- Knowledge Graphs alignment and querying
- Knowledge extraction and integration of heterogeneous data
- Risk detection and prediction
- Evolving Knowledge Graphs
Paper Publishing
Workshop papers will be published in the Springer CCIS series.
Outstanding workshop papers will be invited to submit an extended and revised version of their papers to a special issue in Information Systems Frontiers (Springer) – Note: This is also an open call .
Diversity and Inclusion Statement
We support Diversity & Inclusion in the ADBIS community therefore we kindly ask authors to adopt. We support Diversity & Inclusion in the ADBIS community therefore we kindly ask authors to adopt inclusive language in their papers and presentations (inclusive writing and inclusive talks), and all participants to adopt the proper code on conduct (code of conduct).